全部博文
-
發布時間:2018-02-01臭氧生物活性炭是當前國內外飲用水深度處理的主流工藝之一。臭氧生物活性炭技術是將臭氧化學氧化、活性炭物理化學吸附、生物氧化降解進行聯合使用。在生物活性炭吸附前增設臭氧預氧化,不僅可以初步氧化水中的有機物及其他還原性物質,以降低生物活性炭濾池的有機負荷;還可以使部分難生物降解有機物轉變為易生物降解物質,從而提高生物活性炭濾池進水的可生化性[2]。劉帥霞和汪蕊[3]對飲用水進行深度處理時采用了臭氧-生物活性炭工藝,研究結果表明:該工藝對CODMn、UV254、三鹵甲烷生成勢(THMFP)、藻類和濁度的平均去除率分別為46.5%、46.5%、45.6%、91.2%和98%,最終出水濁度為0.2NTU,CODMn≤3mg/L,顯著提高了飲用水的安全性。王蕾和范國翔[4]報道了臭氧-生物活性炭工藝在某居住區直飲水工程中的應用情況,介紹了該水廠主要處理單元的設計尺寸、運行參數以及該工藝對飲用水中主要污染物的去除效果,出水水質符合國家《飲用凈水水質標準》CJ94-2005。張金松等[5]研究發現采用臭氧化工藝對三鹵甲烷前質和鹵乙酸前質均具有很好的去除效果;生物活性炭工藝對鹵乙酸前質表現出較好去除效果,但對三鹵甲烷前質的去除效果有限,該工藝有利于提高出水的生物穩定性,并明顯降低水的致突變活性。臭氧-生物活性炭還被成功用于處理呈現高藻、高有機物、高氨氮“三高&dquo;特征的太湖水處理中,為類似水廠的深度處理改造提供經驗和示范[6]。針對目前以黃河水為源水的自來水廠水質不甚理想的情況,張可欣[7]采用生物活性炭濾池對受污染黃河水中有機物進行了深度處理。研究結果表明:該濾池對有機物的去除效果較好,其對CODMn、UV254、總藻、Chla、三氯甲烷生成勢、色度的去除率分別為15.7%~38.8%、24.7%~49.7%、24%~100%、30%~87.8%、20.6%~46.6%、25%~66.6%。臭氧―生物活性炭深度處理工藝具有諸多的優點,但在應用過程中也會發生活性炭濾池生物泄漏、溴酸鹽超標、中間提升泵房運行不穩定等問題,袁煦等[8]針對上述問題提出了防止生物泄漏、溴酸鹽超標等設計優化和改進措施,為臭氧―生物活性炭工藝更加科學合理的運用提供依據。總之,臭氧化生物活性炭處理工藝充分發揮了臭氧化和生物活性炭兩種水處理技術的優點,并相互促進和補充,是一種高效的除污染技術,能夠充分保證飲用水的安全性。
-
發布時間:2018-01-31循環冷卻水中的微生物來自兩個方面。一是冷卻塔在水的蒸發過程中需要引入大量的空氣,微生物也隨空氣帶入冷卻水中,二是冷卻水系統的補充水或多或少都會有微生物,這些微生物也隨補充水進入冷卻水系統中。 藻類在日光的照射下,會與水中的二氧化碳、碳酸氫根等碳源起光合作用,吸收碳素作營養而放出氧,因此,當藻類大量繁殖時,會增加水中溶解氧含量,有利于氧的去極化作用,腐蝕過程因此而加速。微生物在循環水系統中的大量繁殖,會使循環水顏色變黑,發生惡臭,污染環境。同時,會形成大量黏泥使冷卻塔的冷卻效率降低,木材變質腐爛。黏泥沉積在換熱器內,使傳熱效率降低和水頭損失增加,沉積在金屬表面的黏泥會引起嚴重的垢下腐蝕,同時它還隔絕了緩蝕阻垢劑對金屬的作用,使藥劑不能發揮應有的緩蝕阻垢效能。微生物黏泥除了會加速垢下腐蝕外,有些細菌在代謝過程中,生物分泌物還會直接對金屬構成腐蝕。所有這些問題導致循環水系統不能長期安全運轉,影響生產,造成嚴重的經濟損失,因此,微生物的危害與水垢、腐蝕對冷卻水系統的危害是一樣的嚴重,甚至可以說,三者比較起來控制微生物的危害是首要的。 循環水中微生物的動向可以通過以下化學分析項目進行測量: (1)余氯(游離氯)加氯殺菌時要注意余氯出現的時間和余氯量,因為微生物繁殖嚴重時就會使循環水中耗氯量大大地增加。 (2)氨 循環水中一般不含氨,但由于工藝介質泄漏或吸入空氣中的氨時也會使水中出現含氨,這時不能掉以輕心,除積極尋找氨的泄漏點外,還要注意水中是否含有亞硝酸根,水中的氨含量最好是控制在10mg/l以下。 (3)NO2- 當水中出現含氨和亞硝酸根時,說是水中已有亞硝酸菌將氨轉化為亞硝酸根,這時循環水系統加氯將變為十分困難,耗氯量增加,余氯難以達到指標,水中NO2-含量最好是控制在小于1mg/l。 (4)化學需氧量 水中微生物繁殖嚴重時會使COD增加,因為細菌分泌的黏液增加了水中有機物含量,故通過化學需氧量的分析,可以觀察到水中微生物變化的動向,正常情況下水中COD最好小于5mg/l(KMnO4法)。 循環水中微生物所造成的危害是十分嚴重的,如果要在微生物造成危害之后采取措施往往是事倍功半還要耗費大量的殺生劑和金錢。因此,事先全面監測循環冷卻水的微生物情況是十分必要的,
-
發布時間:2018-01-31工業循環冷卻水系統在運行過程中,由于水分蒸發、風吹損失等情況使循環水不斷濃縮,其中所含的鹽類超標,陰陽離子增加、pH值明顯變化,致使水質惡化,而循環水的溫度,pH值和營養成分有利于微生物的繁殖,冷卻塔上充足的日光照射更是藻類生長的理想地方。而結垢控制及腐蝕控制、微生物的控制等等,必然的需要進行循環水處理。 循環水運行過程中主要產生的問題: (1)水垢:由于循環水在冷卻過程中不斷地蒸發,使水中含鹽濃度不斷增高,超過某些鹽類的溶解度而沉淀。常見的有碳酸鈣、磷酸鈣、硅酸鎂等垢。水垢的質地比較致密,大大的降低了傳熱效率,0.6毫米的垢厚就使傳熱系數降低了20%。 (2)污垢:污垢主要由水中的有機物、微生物菌落和分泌物、泥沙、粉塵等構成,垢的質地松軟,不僅降低傳熱效率而且還引起垢下腐蝕,縮短設備使用壽命。 (3)腐蝕:循環水對換熱設備的腐蝕,主要是電化腐蝕,產生的原因有設備制造缺陷、水中充足的氧氣、水中腐蝕性離子(Cl-、Fe2+、Cu2+)以及微生物分泌的黏液所生成的污垢等因素,腐蝕的后果十分嚴重,不加控制極短的時間即使換熱器、輸水管路設備報廢。 (4)微生物粘泥:因為循環水中溶有充足的氧氣、合適的溫度及富養條件,很適合微生物的生長繁殖,如不及時控制將迅速導致水質惡化、發臭、變黑,冷卻塔大量黏垢沉積甚至堵塞,冷卻散熱效果大幅下降,設備腐蝕加劇。因此循環水處理必須控制微生物的繁殖。
-
發布時間:2018-01-29重金屬廢水主要來自礦山、冶煉、電解、電鍍、農藥、醫藥、油漆、顏料等企業排出的廢水。 廢水中重金屬的種類、含量及存在形態隨不同生產企業而異。由于重金屬不能分解破壞,而只能轉移它們的存在位置和轉變它們的物理和化學形態。例如,經化學沉淀處理后,廢水中的重金屬從溶解的離子形態轉變成難溶性化臺物而沉淀下來,從水中轉移到污泥中;經離子交換處理后,廢水中的重金屬離子轉移到離子交換樹脂上,經再生后又從離子交換樹脂上轉移到再生廢液中。 因此,重金屬廢水處理原則是:首先,最根本的是改革生產工藝.不用或少用毒性大的重金屬;其次是采用合理的工藝流程、科學的管理和操作,減少重金屬用量和隨廢水流失量,盡量減少外排廢水量。重金屬廢水應當在產生地點就地處理,不同其他廢水混合,以免使處理復雜化。更不應當不經處理直接排入城市下水道,以免擴大重金屬污染。 對重金屬廢水的處理,通常可分為兩類;一是使廢水中呈溶解狀態的重金屬轉變成不溶的金屬化合物或元素,經沉淀和上浮從廢水中去除.可應用方法如中和沉淀法、硫化物沉淀法、上浮分離法、電解沉淀(或上浮)法、隔膜電解法等;二是將廢水中的重金屬在不改變其化學形態的條件下進行濃縮和分離,可應用方法有反滲透法、電滲析法、蒸發法和離子交換法等。這些方法應根據廢水水質、水量等情況單獨或組合使用。
-
發布時間:2018-01-29含油廢水主要來源于石油、石油化工、鋼鐵、焦化、煤氣發生站、機械加工等工業部門。 廢水中油類污染物質,除重焦油的相對密度為1.1以上外,其余的相對密度都小于1。油類物質在廢水中通常以三種狀態存在。 (1)浮上油,油滴粒徑大于100μm,易于從廢水中分離出來。 (2)分散油.油滴粒徑介于10一100μm之間,懇浮于水中。 (3)乳化油,油滴粒徑小于10μm,不易從廢水中分離出來。 由于不同工業部門排出的廢水中含油濃度差異很大,如煉油過程中產生廢水,含油量約為150一1000mg/L,焦化廢水中焦油含量約為500一800mg/L,煤氣發生站排出廢水中的焦油含量可達2000一3000mg/L。 因此,含油廢水的治理應首先利用隔油池,回收浮油或重油,處理效率為60%一80%,出水中含油量約為100一200mg/L;廢水中的乳化油和分散油較難處理,故應防止或減輕乳化現象。方法之一,是在生產過程中注意減輕廢水中油的乳化;其二,是在處理過程中,盡量減少用泵提升廢水的次數、以免增加乳化程度。處理方法通常采用氣浮法和破乳法。
-
發布時間:2018-01-29隨著我國城鎮化水平不斷提高,污水處理設施建設得到了高速發展,據《2013-2017年中國污泥處理處置深度調研與投資戰略規劃分析報告》統計2010年我國城鎮污水處理廠已經建有2500多座,城市污水處理能力已達到每天1.22億噸,為實現國家的減排目標和水環境改善,做出了巨大貢獻。但是污水廠的建設及運行伴隨產生了大量剩余污泥,以含水率80%計,全國年污泥總產水量將很快突破3000萬噸,污泥處理形勢十分嚴峻。 污泥基本類型 原污泥(awsludge):未經污泥處理的初沉淀污泥。二沉剩余污泥或兩者的混合污泥。 初沉污泥(pimaysludge):從初沉淀池排出的沉淀物。 二沉污泥(secondeysludge):從二次沉淀池(或沉淀區)排出的沉淀物。 活性污泥(acivaedsludge):曝氣池中繁殖的含有各種好氧微生物群體的絮狀體。 消化污泥(digesedsludge):經過好氧消化或厭氧消化的污泥,所含有機物質濃度有一定程度的降低,并趨于穩定。 回流污泥(euedsludge):由二次沉淀(或沉淀區)分離出來,回流到曝氣池的活性污泥。 剩余污泥(excessacivaedsludge):活性污泥系統中從二次沉淀池(或沉淀區)排出系統外的活性污泥。 污泥氣(sludgegas):在污泥厭氧消化時,有物分解所產生的氣體,主要成分為甲烷和二氧化碳,并有少量的氫、氮和硫化氫。俗稱沼氣。
-
發布時間:2018-01-24含汞廢水主要來源于有色金屬冶煉廠、化工廠、農藥廠、造紙廠、染料廠及熱工儀器儀表廠等。 從廢水中去除無機汞的方法有硫化物沉淀法、化學凝聚法、活性炭吸附怯、金屬還原法、離子交換法和微生物法等。一般偏堿性含汞廢水通常采用化學凝聚法或硫化物沉淀法處理。偏酸性的含汞廢水可用金屬還原法處理。低濃度的含汞廢水可用活性炭吸附法、化學凝聚法或活性污泥法處理,有機汞廢水較難處理,通常先將有機汞氧化為無機汞,而后進行處理。
-
發布時間:2018-01-24含酚廢水主要來自焦化廠、煤氣廠、石油化工廠、絕緣材料廠等工業部門以及石油裂解制乙烯、合成苯酚、聚酰胺纖維、合成染料、有機農藥和酚醛樹脂生產過程。 含酚廢水中主要含有酚基化合物,如苯酚、甲酚、二甲酚和硝基甲酚等。酚基化合物是一種原生質毒物,可使蛋白質凝固。水中酚的質量濃度達到0.1一0.2mg/L時,魚肉即有異味,不能食用;質量濃度增加到1mg/L,會影響魚類產卵,含酚5—10mg/L,魚類就會大量死亡。飲用水中含酚能影響人體健康,即使水中含酚質量濃度只有0.002mg/L,用氯消毒也會產生氯酚惡臭。 通常將質量濃度為1000mg/L的含酚廢水.稱為高濃度含酚廢水,這種廢水須回收酚后,再進行處理。質量濃度小于1000mg/L的含酚廢水,稱為低濃度含酚廢水。通常將這類廢水循環使用,將酚濃縮回收后處理。回收酚的方法有溶劑萃取法、蒸汽吹脫法、吸附法、封閉循環法等。含酚質量濃度在300mg/L以下的廢水可用生物氧化、化學氧化、物理化學氧化等方法進行處理后排放或回收。
-
發布時間:2018-01-23我國是一個水資源匱乏的國家,水資源人均占有量僅為世界水資源人均占有量的1/4,而且分布不均、利用率低。隨著社會經濟發展,水的需求量不斷增加,水資源短缺和社會經濟發展的矛盾更加突出,開展廢水深度處理及回用對緩解我國水資源的緊張形勢十分必要。 膜對不同物質具有透過性差異,膜分離技術就是利用膜的這種特性,在一定的傳質推動力下,對混合物進行分離的方法。印染廢水深度處理所用的膜分離技術主要有微濾(MF)、超濾(UF)、納濾(NF)和反滲透(RO)。MF和UF常作為NF和RO的預處理;UF能分離大分子有機物、膠體、懸浮固體;NF能實現脫鹽與濃縮的同時進行;RO能去除可溶性金屬鹽、有機物、膠粒等并截留所有離子。阮慧敏等〔3〕采用UF+RO工藝對浙江某印染廠廢水生化處理后的出水進行處理,膜系統進水COD100~350mg/L,色度180倍,電導率800~1350μS/cm。膜系統處理后出水COD<10mg/L,色度1~2倍,電導率<30μS/cm。XujieLu等〔4〕采用生物濾池結合膜分離的方法,當進水COD為150~450mg/L時,出水COD降到50mg/L以下,去除率高達91%,且色度、濁度、鐵錳濃度的去除效果都非常好。 膜分離技術的優勢為:其不僅能去除水中殘余的有機物,降低色度,還能脫除無機鹽類,防止系統中無機鹽的積累,是印染廢水深度處理中極具前景的一項技術。然而,膜處理工藝的成本較高,且膜組件易被污染而縮短其使用壽命。只有通過控制并降低膜污染來延長膜壽命,從而降低成本,膜分離技術在印染廢水深度處理中才會得到更加廣泛的應用。
-
發布時間:2018-01-23我國是一個水資源匱乏的國家,水資源人均占有量僅為世界水資源人均占有量的1/4,而且分布不均、利用率低。隨著社會經濟發展,水的需求量不斷增加,水資源短缺和社會經濟發展的矛盾更加突出,開展廢水深度處理及回用對緩解我國水資源的緊張形勢十分必要。 將廢水通過由吸附劑組成的濾床,污染物質被吸附在多孔物質表面上或被過濾除去。活性炭是印染廢水深度處理中最常用的吸附劑,其微孔多,比表面積可高達500~600m2/g,具有很強的吸附脫色性能,特別適合相對分子質量小于400的水溶性染料的脫色吸附。但活性炭對疏水性染料吸附效果較差,其再生也比較復雜且費用昂貴,限制了吸附法在印染廢水深度處理中的應用。天然礦物如高嶺土、硅藻土、活性白土以及煤粉等也具有較高的吸附性能,在印染廢水的深度處理中也有使用。另外,李蒙英等〔2〕研究了利用青霉菌對印染廢水進行吸附處理,結果發現:其對黑色和紅色染浴廢水的色度具有較好的處理效果,去除率達到了98.0%和74.5%,為吸附法的發展提供了新的選擇。吸附法雖然見效快,但是使用后的吸附劑再生比較困難,如果不進行回收再生則容易產生二次污染。因此,研發新型高效且易再生的吸附劑是當前吸附方法的研究發展方向。
推薦博文
- 3 生物活性炭濾池在給水深度處... 1940
- 4 污水處理的工藝—循環水微生 1937
- 5 污水處理的工藝—循環水 1948
- 6 工業污水污泥—重金屬廢水 1683
- 7 工業污水的處理—含油廢水 1963
- 8 工業污水污泥—污泥基本類型 2120
- 9 工業污水的處理— 含汞廢水 1876
- 10 工業污水的處理—含酚廢水 1849
- 11 污水回用工藝—膜分離技術 1826
- 12 污水回用工藝—吸附技術 2059
合作企業見證
聯系我們
全國熱線:400-847-8878
座機熱線:027-65330820
企業郵箱:glhb@glhbgs.com
公司地址:武漢市漢陽區江城大道358號欣隆壹號公館5A座7層